The Universal Property of Equivariant Kk-theory

نویسنده

  • KLAUS THOMSEN
چکیده

Let G be a locally compact, σ-compact group. We prove that the equivariant KK-theory, KK, is the universal category for functors from G-algebras to abelian groups which are stable, homotopy invariant and split-exact. This is a generalization of Higsons characterisation of (non-equivariant) KK-theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Kasparov Theory and Generalized Homomorphisms

Let G be a locally compact group. We describe elements of KK(A,B) by equivariant homomorphisms, following Cuntz’s treatment in the non-equivariant case. This yields another proof for the universal property of KK: It is the universal split exact stable homotopy functor. To describe a Kasparov triple (E, φ, F ) for A,B by an equivariant homomorphism, we have to arrange for the Fredholm operator F...

متن کامل

Coactions of Hopf-C-algebras and equivariant E-theory

We define and study an equivariant E-theory with respect to coactions of Hopf C-algebras; we prove the Baaj-Skandalis duality in this setting. We show that the corresponding equivariant KK-theory of Baaj and Skandalis enjoys an universal property. In the appendix, we look at the different ways of expressing equivariant stability for a functor, and prove an equivariant BrownGreen-Rieffel stabili...

متن کامل

Restriction to Finite-index Subgroups as Étale Extensions in Topology, Kk-theory and Geometry

For equivariant stable homotopy theory, equivariant KK-theory and equivariant derived categories, we show how restriction to a subgroup of finite index yields a finite commutative separable extension, analogous to finite étale extensions in algebraic geometry.

متن کامل

Bivariant K-theory for Smooth Manifolds I Lectures By: Heath Emerson (joint Work with Ralf Meyer) Notes By: Robin Deeley and Elkaioum Moutuou

A. The aim of this talk and the next is to explain two important aspects of equivariant Kasparov theory, especially for smooth manifolds: duality, and the topological description of equivariant KK-groups using equivariant correspondences. In the first talk we will review the basic definitions of KK-theory, including the Thom isomorphism. We then explain duality, which gives a way of redu...

متن کامل

Duality, Correspondences and the Lefschetz Map in Equivariant Kk-theory: a Survey

We survey work by the author and Ralf Meyer on equivariant KKtheory. Duality plays a key role in our approach. We organize the survey around the objective of computing a certain homotopy-invariant of a space equipped with a proper action of a group or groupoid called the Lefschetz map. The latter associates an equivariant K-homology class to an equivariant Kasparov self-morphism of a space X ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998